Non Safety Picking Sensor

F3W-D

- Sensing distance of 3 m .
- Selectable display mode (all lighting, all flashing, el-evator-like lighting, accordion-like lighting).
- Six picking indicators provide a very clear display.
- Selectable display speed (SLOW/FAST).
- External picking indicators may be connected.
- External indicators can be directly connected to the Picking Sensor and mounted in an easy-to-see location.

Compact, Resistant to Mutual Interference, and Ideal for Picking a Variety of Parts

Ordering Information

Sensors									
Sensing method	Appearance	Connection method	Sensing distance	Opticalaxis pitch	No. of optical axes	Detecting height (mm)	Output type	External indicator	Model
Throughbeam		Pre-wired (5 m)		25 mm	5	100	NPN open collector	---	F3W-D052A
								Possible	F3W-D052AP
		Connector (2 m)						---	F3W-D052B
								Possible	F3W-D052BP
		Pre-wired					PNP	---	F3W-D052C
		(5 m)					open	Possible	F3W-D052CP
		Connector					collector	---	F3W-D052D
		(2 m)						Possible	F3W-D052DP

(1) WARNING:

Do not apply F3W-D as safety mechanisms used in pressing machines or any other safety mechanisms for protecting the human body from danger

Accessories (Sold Separately)
Mounting Brackets

Appearance	Model	Quantity	Remarks
	F39-L10	2	L-shaped Mounting Bracket
	F39-L11	2	Flat Mounting Bracket

Protective Bracket

Appearance	Model	Quantity
		One each for Emitter and Re- ceiver (mounting screws includ- ed)

Y-shaped Joint Plugs and Sockets (Double-ended Connectors)				Y-shaped Joint Plugs and Sockets without Cable			
Appearance	Overall length	Model	Quantity	Appearance	Model	Quantity	Remarks
	2 m	$\begin{aligned} & \hline \text { XS2R-D526- } \\ & \text { S001-2 } \end{aligned}$	1				Connecting cable:
	5 m	$\begin{array}{\|l} \text { XS2R-D526- } \\ \text { S001-5 } \end{array}$	1	- 0	XS2R-D526-		Double-ended connector: XS2W Series
				6	S003	1	Single-ended connector: XS2F-series 4conductor models

Specifications

Ratings / Characteristics

PNP Output

Item		Through-beam	
		F3W-D052C(P) (see note 1)	F3W-D052D(P) (see note 1)
Sensing distance		3 m , switchable between LONG mode (1 to 3 m) and SHORT mode: (0.05 to 1 m), factory-set to SHORT mode	
Optical-axis pitch		25 mm	
No. of optical axes		5	
Detecting height		100 mm	
Sensing object		Opaque, 35 mm dia. min.,	
Light source (wavelength)		Infrared LED (860 nm)	
Power supply voltage		12 to $24 \mathrm{VDC} \pm 10 \%$ (ripple range (p-p): 10% max.)	
Power consumption		Emitter: 0.6 W max., Receiver: 0.7 W max.	
Control output		PNP open collector with 100 mA max. at 30 VDC Residual voltage: $2,5 \mathrm{~V}$ max. at 100 mA Dark ON or Light ON (selectable)	
Picking instruction indicator input		Open collector with relay or transistor input Indicator ON: Input voltage of 0 to 2 V Indicator OFF: Open (with leakage current of 0.1 mA max.)	
Protection circuit		Reverse-connection protection, output short protection, and mutual interference interrupting function (set with frequency selector switch)	
Response time		Operate/Release: 10 ms max .	
Indicator	Receiver	Operation indicator (orange), stability indicator (green), and 6 picking indicators (orange)	
	Emitter	Power indicator (green), different frequency indicator (green), and 6 picking indicators (orange)	
Ambient temperature		Operating: -10° to $55^{\circ} \mathrm{C}$ Storage: -25° to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		35 to 85\% (with no condensation)	
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength		1,000 VAC $50 / 60 \mathrm{~Hz}$ for 1 min	
Vibration resistance		Destruction: 10 to $50 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double-amplitude for 2 hours each in X, Y and Z directions	
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s} 2,3$ times each in X, Y and Z directions	
Degree of protection		IEC60529: IP62 (with the operation cover closed)	
Connection method		Pre-wired Standard cable length: 5 m	Connector (M12 5-pin connector) Standard cable length: 2 m
Weight (including package)		Approx. 360 g	Approx. 230 g
Materials	Case, display window	ABS resin	
	Lens	Acrylic resin	
	Operation cover	Nylon (PA6)	
Accessories		Instruction manual	

Note: 1 .The F3W-D052 \square P Emitters are provided with the external picking indicator output line shown in the following table.l

Item	F3W-D052CP, F3W-D052DP
Connection method	Pre-wired with connector (standard cable length: 300 mm) Connector model: SMP-02V-NC (manufactured by Nihon Crimp Terminal, Ltd.)
Electrical specifications	Output current: 50 mA max. Output voltage: \quad Fixed at sensor power supply voltage

NPN Output

Item		Through-beam	
		F3W-D052A(P) (see note 1)	F3W-D052B(P) (see note 1)
Sensing distance		3 m , switchable between LONG mode (1 to 3 m) and SHORT mode: (0.05 to 1 m), factory-set to SHORT mode	
Optical-axis pitch		25 mm	
No. of optical axes		5	
Detecting height		100 mm	
Sensing object		Opaque, 35 mm dia. min.,	
Light source (wavelength)		Infrared LED (860 nm)	
Power supply voltage		12 to $24 \mathrm{VDC} \pm 10 \%$ (ripple range (p-p): 10% max.)	
Power consumption		Emitter: 0.6 W max., Receiver: 0.7 W max.	
Control output		NPN open collector with 100 mA max. at 30 VDC Residual voltage: 1 V max. at 100 mA Dark ON or Light ON (selectable)	
Picking instruction indicator input		Open collector with relay or transistor input Indicator ON: Input voltage of 0 to 2 V Indicator OFF: Open (with leakage current of 0.1 mA max.)	
Protection circuit		Reverse-connection protection, output short protection, and mutual interference interrupting function (set with frequency selector switch)	
Response time		Operate/Release: 10 ms max.	
Indicator	Receiver	Operation indicator (orange), stability indicator (green), and 6 picking indicators (orange)	
	Emitter	Power indicator (green), different frequency indicator (green), and 6 picking indicators (orange)	
Ambient temperature		Operating: -10° to $55^{\circ} \mathrm{C}$ Storage: -25° to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		35 to 85\% (with no condensation)	
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength		1,000 VAC 50/60 Hz for 1 min	
Vibration resistance		Destruction: 10 to 50 Hz , $1.5-\mathrm{mm}$ double-amplitude for 2 hours each in X, Y and Z directions	
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s} 2,3$ times each in X, Y and Z directions	
Degree of protection		IEC60529: IP62 (with the operation cover closed)	
Connection method		Pre-wired Standard cable length: 5 m (see note 2)	Connector (M12 5-pin connector) Standard cable length: 2 m (see note 2)
Weight (including package)		Approx. 360 g	Approx. 230 g
Materials	Case, display window	ABS resin	
	Lens	Acrylic resin	
	Operation cover	Nylon (PA6)	
Accessories		Instruction manual	

Note: 1.The F3W-D052 \square P Emitters are provided with the external picking indicator output line shown in the following table.I

Item	F3W-D052AP, F3W-D052BP
Connection method	Pre-wired with connector (standard cable length: 300 mm) Connector model: SMP-02V-NC (manufactured by Nihon Crimp Terminal, Ltd.)
Electrical specifications	Output current: 50 mA max. Output voltage: Fixed at sensor power supply voltage

2.The following cable lengths are also available.

F3W-D052A(P): $2 \mathrm{~m}, 7 \mathrm{~m}$
F3W-D052B(P): $1 \mathrm{~m}, 3.5 \mathrm{~m}$

Engineering Data

Parallel Operating Range (Typical)

SHORT Mode

Sensing distance $X(m)$
(1) Horizontal Movement Characteristics

(2) Vertical Movement Characteristics

Angle Characteristics (Typical)

LONG Mode: Direction of Swing

LONG Mode: Direction of Rotation

SHORT Mode: Direction of Swing

(1) Emitter Angle Characteristics

(Direction of swing) (Direction of rotation)
(2) Receiver Angle Characteristics

Operation

Output Circuits NPN

Output form	NPN open collector output
Model	F3W-D052A, F3W-D052AP, F3W-D052B, F3W-D052BP
State of output transistor	Dark-ON mode Light-ON mode ON: One optical axis or more is interrupted ON: No optical axis is interrupted OFF: No optical axis is interrupted OFF: One optical axis or more is interrupted
Timing chart	
Mode Selector	D.ON (Dark-ON) ${ }^{\text {L.ON (Light-ON) }}$
Output circuit	*1 The sections surrounded by single-dashed lines are applicable to the F3W-D052AP-L/BP-L only. *2 The circled numbers represent external picking indicator output pin numbers for a connector relay type. The following diagram shows the relationship between picking instruction input, picking indicator status, and external picking indicator output. DIP switch 1 is used to switch the picking display mode between all lighting, all flashing, elevator-like lighting, and accordion-like lighting. It is also possible to switch the external picking display mode between lighting and flashing.

Output Circuits PNP

Output form	PNP open collector output
Model	F3W-D052C, F3W-D052CP, F3W-D052D, F3W-D052DP
State of output transistor	Dark-ON mode Light-ON mode ON: One optical axis or more is interrupted ON: No optical axis is interrupted OFF: No optical axis is interrupted OFF: One optical axis or more is interrupted
Timing chart	Light Lincident No optical axis is interrupted One optical axis or more is interrupted
Mode Selector	D.ON (Dark-ON) ${ }^{\text {L.ON (Light-ON) }}$
Output circuit	 ※The inside of the speck chain line is only F3W-D052CP-L/DP-L. Numerical value inside parenthesis,(),indicates a pin number of the connector of the sensor.

Dimensions

F3WD

Note: All units are in millimeters unless otherwise indicated

Accessories (Sold Separately)
Mounting Brackets
F39-L10 (L-shaped)

Protective Bracket

Material: Steel (Thickness: 1.6 mm)
Mounting screws provided

Note: The Emitter and Receiver are axially symmetrical.
Y-shaped Joint Plugs and Sockets (Double-ended Connectors)
XS2R-D526-S001-2 (L=2,000 mm) XS2R-D526-S001-5 (L=5,000 mm)

Y-shaped Joint Plugs and Sockets without cable

XS2R-D526-S003

Precautions

© Warning:
Do not apply the F3W-D as safety mechanisms used in pressing machines or any other safety mechanisms for protecting the human body from danger.

1. Do not apply the F3W-D as safety mechanisms used in pressing machines, shears, rolling machines, spinning machines, cotton mill machines, or robots for the protection of an operator's hands and body
2. The F3W-D is designed for detection of the human body or moving objects in the detection area but not for protection against danger.
3. The F3W-D or any product incorporating the F3W-D may be exported to any country. Should the F3W-D cause any problem conflicting with the local law or related to product liability locally, however, OMRON shall, without exception, assume no responsibility for it.

- Caution

Before using more than one F3W-D Unit in parallel or serial, take necessary countermeasures against mutual interference so that the unit will not malfunction. Refer to Mutual Interference Attenuating Function.

General Precautions

Supply Voltage
Make sure that the supply voltage is within the rated range. If the supply voltage is not within the rated range or 100 VAC is imposed on a DC Sensor model, the Sensor may be damaged or malfunction.
Load Short-circuiting
Do not short-circuit the load, otherwise the Sensor may be damaged or malfunction.
Incorrect Wiring
Do not make mistakes in the polarity of power supply or wiring, otherwise the Sensor may be damaged or malfunction.
Connection without Load
Make sure that the load is connected to the Sensor in operation, otherwise the Sensor may be damaged or malfunction.

Operating Environment
Do not use the Sensor in an environment containing flammable or explosive gases.
Do not use the Sensor underwater.
Do not disassemble, repair, or modify the Sensor.
Always turn OFF the system power before installing or replacing the Sensor.

System Design

Cables
For both pre-wired and connector models, the maximum tensile force of cables must be 50 N .

Wiring
If the Sensor cables are housed in the same conduit or duct as for high-voltage and power lines, the Sensor may be subject to induced current, resulting in malfunction or damage. For this reason, the Sensor cables must be separated from the high-voltage and power lines or housed in a separate conduit.

Power ON Timing

It takes 100 ms for the Sensor to operate properly after it is turned ON. Therefore, other devices should be turned ON at least 100 ms after the Sensor is turned ON. If the Sensor and the load are connected to different power supplies, the Sensor power must be turned ON first.

Power Supply

When using a commercially available switching regulator, always ground it to the frame ground (FG) or ground (G) terminal. Otherwise, switching noise may result in malfunctions.
Mutual Interference Attenuating Function

1. Two Sets of Sensors:

Set these Sensors to different frequencies with the frequency selector. Refer to DIP Switch 1 Mode Switching later in this datasheet.
If the mutual interference attenuating function is not used, and there are two Sensors with the same frequency setting, a beam from the Emitter of one Sensor may hit the Receiver of the other Sensor, resulting in malfunction.
This function cannot prevent mutual interference between the F3W-D Sensor and a Photoelectric Sensor of another model.
2. Three or More Sets of Sensors:

When 3 or more sets of Sensors are used in parallel, mutual interference may result in malfunction. Take the following measures to prevent mutual interference, and check for mutual interference.

- While in LONG mode, the Sensors are more easily affected by interference. Therefore, if the distance between the Emitter and Receiver of a Sensor is 1 m or less, use the SHORT mode.
- The distance between two adjacent sets of Sensors must be at least l_{1} or l_{2}, which does not cause mutual interference between two Sensors with the same frequency setting. l_{1} or l_{2} is at least 1.5 times the distance shown in Parallel Operating Range of the Engineering Data.

- Install a barrier so that there will not be mutual interference between Sensors with the same frequency setting. (See Figure 1.)
A light reflection from the wall or floor may go around a barrier and reach the Receivers. Install a barrier so that it will also block any light reflection. (See Figure 2.)

Figure 1

Figure 2

Correct Use

DIP Switch 1 Mode Switching
Emitters

DIP switch 1		Function	$\begin{aligned} & \text { OFF (left) } \\ & \hline \text { (See note 3.) } \end{aligned}$	ON (right)
	1	Picking display mode setting	(See note 3.)	
	2			
	3	Picking indicator flashing speed setting (see note 1)	SLOW	FAST
	4	External picking display mode setting (see note 4)	Lit	Flashing
	5	NC	--	---
	6	Frequency setting (see note 2)	Frequency A	Frequency B

Receivers

DIP switch 1		Function	OFF (left)	ON (right)
	1	Picking display mode setting	(See note 3.)	
	2			
	3	Picking indicator flashing speed setting (see note 1)	SLOW	FAST
	4	Output mode setting	Dark-ON	Light-ON
	5	Sensing distance (sensitivity) setting	LONG mode (1 to 3 m)	$\begin{aligned} & \text { SHORT } \\ & \text { mode }(0.05 \\ & \text { to } 1 \mathrm{~m}) \end{aligned}$
	6	Not used	---	---

Note: 1 .The flashing speed can be changed in picking display mode (all flashing, elevator-like lighting, or accordion-like lighting) or in external picking display mode. The flashing speed varies with each display mode.
2 . Mutual Interruption Attenuating Function:
The frequency selector is used to switch the emitting frequency between A and B. Making the emitting frequencies of two Sensors different prevents malfunction caused by mutual interference.
3 . Picking Display Mode Setting of DIP Switch 1

DIP switch 1	Pin 1	Pin 2	Display mode
	OFF	OFF	All lighting (All six indicators are lit.)
	ON	OFF	All flashing (All six indicators flash simultaneously.)
	OFF	ON	Elevator-like lighting (Two adjacent indicators simultaneously light so that lighting moves up and down.)

 LED2 O- - OOOOOOOOOOOOOO-6.O

 LED5 OOOOOOO- - 00 LED6 OOOOOOOOO- - - 0000000000

Accordion-like Lighting Mode

$$
\text { Display progress } \longrightarrow
$$

LED1 O- - OOOOOOOOOO- - - O O LED2 OOO - - 0 - OOOOOO•••••000 LED3 OOOOO••••・ーOO••••••OOOOO LED4 OOOOO-9

4 .For F3W-D052jP-L Emitters only
Wiring
Before turning ON the power, make sure that the supply voltage is within the maximum allowable voltage range.
Always connect the sync lines.
Extension cables must be 0.3 mm 2 or more in cross-sectional area and 100 m or less in length (for the F3W-D052A(P) and F3W-D052B(P) only).
Be very careful not to get metal chips in the connector especially during wiring.

Incorrect wiring may damage the equipment. Make sure that the cable length and routing are appropriate to prevent the connectors and cables from getting disconnected. Always leave the operation cover closed during operation. Applying excessive force to the mode selector switch may result in damage. Do not apply a force of more than 5 N .

Cables

Make sure that the bending radius is 25 mm or more.

Installation

Install the Sensor so that its sensing face will not receive light from the sun, fluorescent lamps, incandescent lamps, and other light sources.
Do not strike the Sensor with a hammer or any other tool during the installation, otherwise the internal circuitry of the Sensor may be damaged.
Install the Emitter and Receiver in the same orientation as shown in the following figure. (The cable pullout direction must be the same.)

Use M4 screws to secure the Sensor body.
Secure the case to a tightening torque of $1.2 \mathrm{~N} \times \mathrm{m}$ or less.
Reflection from Wall or Floor
If the Emitter and Receiver are installed as shown in the following illustration, all the axes may not be interrupted due to light reflection from the floor or wall. Make sure that the Emitter and Receiver detect the sensing object properly before using the F3W-D in actual operation.

Side View

M12 Connectors

Always turn OFF the power before connecting or disconnecting an M12 connector.
Always connect or disconnect an M12 connector by holding its cover.
Always tighten the fixture by hand. Using pliers may result in damage.
Insufficient tightening may loosen the connector due to vibration, resulting in failure to ensure the specified degree of protection.

Operation and Stability Status Display
The following illustration shows the indicator status corresponding to each incident level.
Install the Receiver so that the green stability indicators are both ON in light receiving status.

Note: If the Receiver is set to the stable light-receiving zone, it will become more resistant to environmental fluctuations such as temperature, voltage, dust, and setting deviation after installation. For applications where a stable light-receiving zone is not obtained, attention must be paid to environmental fluctuations.
Installation Environment
Do not install the F3W-D Sensor under the following conditions.

Where direct sunlight is received
Where humidity is high and there is a risk of condensation
Where there are corrosive gases
Where vibration and shock are directly transmitted to the Sensor

Cleaning

- Do not use organic solvents for cleaning. Otherwise, the surfaces of the Sensor will be eroded.
- Use a soft, dry cleaning cloth.

Non Safety Area Sensor

F3ZN

Discrimination of a wide range of shapes makes this sensor ideal for a variety of applications, such as sorting, inspection, quality control and positioning

Features

Fits perfectly into installations!
Protective Height
The Scanner can be produced with a beam gap of $9,15,30$, or 60 mm , and with a sensing height of up to $1,785 \mathrm{~mm}$.

Connects in series for up to 240 beams.
Series Connection Specifications
Up to 3 Scanners can be connected in series to enable sensing with up to 240 beams.

Support software for PCs allows functions to be set as desired with programmable I/O.
The status of the beams are output in parallel to allow height and area measurement as well as completeness checks.

- The total number of interrupted (or incident) beams can be output.
- Up to two types of status, such as the number of the highest (or lowest) beam that is interrupted (or incident), can be simultaneously output using 16 points of programmable I/O (P-I/O).
Beams can be handled in groups of a size selected by the user. Dropping position inspections and picking checks are possible.
- Beams can be divided into as many as 16 groups.

Communication (RS-485/RS-
232C) with PLC (Programmable Controllers) is supported.

Applications

Features

Smarter and easier operation with PC control*, providing the optimum function for your needs.
 * "Ascan" (for PCs) function setting support software required for PC integration.

Incident Level Monitoring

Conventional area sensors use ON/ OFF control. The Area Scanner facilitates analog monitoring of the incident level and so installation and operating status checks and sensitivity adjustment can be performed simply. There are also features that allow smoother threshold setting.

Scan Monitor

It is possible to keep track of ON/OFF data for all beams, together with times. This allows accurate object comparisons and checks based on a variety of settings.

[^0]Programmable I/O can be allocated to various measurement processes.

Beam Level Graph
The light receiving sensitivity can be displayed as a graph. ON/ OFF sensitivity adjustment is possible.

Beam Level List
The light receiving sensitivity can be displayed in digital figures and incident level data can be saved in files.

Scan Monitor
The ON/OFF status can be displayed at intervals of a user-set sampling time.

P-I/O (16 Points)

The conditions set for combined ON/OFF judgement, parallel output, and group judgement can be allocated to output as required.

Combined ON/OFF Judgement
Output conditions based on the status of all the beams can be set as required (e.g., ON when 3 or more beams are incident, ON when 2 or more beams are interrupted, etc.)

Parallel Output
The output format can be selected as required. For example, it is possible to output the number of the highest incident beam and the total number of interrupted beams.

Group Judgement
Beams within an area can be handled as a group.

BANK Function

Four banks can be set.

Available Models

Main Units

Sensor \square Infrared

Appearance	Operating range	Beam gap	Number of beams	Sensing height	Model	
					PNP output	NPN output
	0.2 to 7 m	9 mm	21 to 125 （See＊1．）	180 to $1,116 \mathrm{~mm}$	$\begin{gathered} \text { F3ZN- }{ }^{* 3} \\ \text { S } \square \text { POPO } \end{gathered}$	$\begin{gathered} \text { F3ZN- } \\ \text { S } \square \square \square N 09 \end{gathered}$
		15 mm	13 to 120	180 to $1,785 \mathrm{~mm}$	$\begin{gathered} \text { F3ZN- }{ }^{* 3} \\ \text { S } \square \square \square P 15 \end{gathered}$	$\begin{gathered} \text { F3ZN- } \\ \text { S口ロロN15 } \end{gathered}$
	0.2 to 10 m	30 mm	7 to 60	180 to $1,770 \mathrm{~mm}$	$\begin{gathered} \text { F3ZN- }{ }^{* 3} \\ \text { S } \square \square \mathrm{P} 30 \end{gathered}$	$\begin{gathered} \text { F3ZN- } \\ \text { S } \square \square \square \text { N30 } \end{gathered}$
		60 mm	4 to 30	240 to $1,740 \mathrm{~mm}$	$\begin{gathered} \text { F3ZN- }{ }^{* 3} \\ \text { S } \square \square \square 60 \end{gathered}$	

＊1．Models with a 9－mm beam gap can only be produced for an odd number of beams．
＊2．For details on model numbers，refer to page D－364 Recommended Area Scanner Models．
＊3．PNP version available as at 2004
Controller

Appearance	Output	Model
	PNP	F3ZP－M1P－FLK＊1
	NPN	F3ZP－M1N－FLK

＊1．PNP version available as at 2004
Accessories（Sold Separately）
Double－ended Connector Cable（Set of 2 for Emitter and Receiver）

Area Scanner Function Setting Support Software（AScan）

Appearance	OS	Model
	Consult your OMRON repre－ sentative．	（English version） F3ZP－CD100－E

Recommended Area Scanner Models

F3ZN-S $\square \square \square \square N(P) 09$ and F3ZN-S $\square \square \square \square$ N(P)09-01
(Beam gap: 9 mm)

Model	Sensing height	Number of beams
F3ZN-S0180N(P)09(-01)	180 mm	21
F3ZN-S0288N(P)09(-01)	288 mm	33
F3ZN-S0432N(P)09(-01)	432 mm	49
F3ZN-S0576N(P)09(-01)	576 mm	65
F3ZN-S0720N(P)09(-01)	720 mm	81
F3ZN-S0864N(P)09(-01)	864 mm	97
F3ZN-S1008N(P)09(-01)	$1,008 \mathrm{~mm}$	113
F3ZN-S1116N(P)09(-01)	$1,116 \mathrm{~mm}$	125

F3ZN-S $\square \square \square \square N(P) 15$ and F3ZN-S $\square \square \square \square N(P) 15-01$ (Beam gap: 15 mm)

Model	Sensing height	Number of beams
F3ZN-S0180N(P)15(-01)	180 mm	13
F3ZN-S0390N(P)15(-01)	390 mm	27
F3ZN-S0510N(P)15(-01)	510 mm	35
F3ZN-S0630N(P)15(-01)	630 mm	43
F3ZN-S0750N(P)15(-01)	750 mm	51
F3ZN-S0870N(P)15(-01)	870 mm	59
F3ZN-S0990N(P)15(-01)	990 mm	67
F3ZN-S1110N(P)15(-01)	$1,110 \mathrm{~mm}$	75
F3ZN-S1230N(P)15(-01)	$1,230 \mathrm{~mm}$	83
F3ZN-S1350N(P)15(-01)	$1,350 \mathrm{~mm}$	91
F3ZN-S1470N(P)15(-01)	$1,470 \mathrm{~mm}$	99
F3ZN-S1590N(P)15(-01)	$1,590 \mathrm{~mm}$	107
F3ZN-S1710N(P)15(-01)	$1,710 \mathrm{~mm}$	115
F3ZN-S1785N(P)15(-01)	$1,785 \mathrm{~mm}$	120

Connector Type

No extra figures at end of model number	-01 at end of model number

F3ZN-S $\square \square \square \square N(P) 30$ and F3ZN-S $\square \square \square \square N(P) 30-01$
(Beam gap: 30 mm)

Appearance	Sensing height	Number of beams
F3ZN-S0180N(P)30(-01)	180 mm	7
F3ZN-S0270N(P)30(-01)	270 mm	10
F3ZN-S0390N(P)30(-01)	390 mm	14
F3ZN-S0510N(P)30(-01)	510 mm	18
F3ZN-S0630N(P)30(-01)	630 mm	22
F3ZN-S0750N(P)30(-01)	750 mm	26
F3ZN-S0870N(P)30(-01)	870 mm	30
F3ZN-S0990N(P)30(-01)	990 mm	34
F3ZN-S1110N(P)30(-01)	$1,110 \mathrm{~mm}$	38
F3ZN-S1230N(P)30(-01)	$1,230 \mathrm{~mm}$	42
F3ZN-S1350N(P)30(-01)	$1,350 \mathrm{~mm}$	46
F3ZN-S1470N(P)30(-01)	$1,470 \mathrm{~mm}$	50
F3ZN-S1590N(P)30(-01)	$1,590 \mathrm{~mm}$	54
F3ZN-S1710N(P)30(-01)	$1,710 \mathrm{~mm}$	58
F3ZN-S1770N(P)30(-01)	$1,770 \mathrm{~mm}$	60

F3ZN-S $\square \square \square \square(P) 60$ and F3ZN-S $\square \square \square \square(P) 60-01$ (Beam gap: 60 mm)

Appearance	Sensing height	Number of beams
F3ZN-S0240N(P)60(-01)	240 mm	5
F3ZN-S0300N(P)60(-01)	300 mm	6
F3ZN-S0420N(P)60(-01)	420 mm	8
F3ZN-S0540N(P)60(-01)	540 mm	10
F3ZN-S0660N(P)60(-01)	660 mm	12
F3ZN-S0780N(P)60(-01)	780 mm	14
F3ZN-S0900N(P)60(-01)	900 mm	16
F3ZN-S1020N(P)60(-01)	$1,020 \mathrm{~mm}$	18
F3ZN-S1140N(P)60(-01)	$1,140 \mathrm{~mm}$	20
F3ZN-S1260N(P)60(-01)	$1,260 \mathrm{~mm}$	22
F3ZN-S1380N(P)60(-01)	$1,380 \mathrm{~mm}$	24
F3ZN-S1500N(P)60(-01)	$1,500 \mathrm{~mm}$	26
F3ZN-S1620N(P)60(-01)	$1,620 \mathrm{~mm}$	28
F3ZN-S1740N(P)60(-01)	$1,740 \mathrm{~mm}$	30

Ratings and Performance

Main Units

Common Ratings and Performance Data for F3ZN-S $\square \square \square \square P \square \square(-01$ to -05) Sensors

Item	Model	F3ZN-S $\square \square \square \square \mathbf{P} 09$	F3ZN-S $\square \square \square \square \mathbf{P 1 5}$	F3ZN-S $\square \square \square \square \mathbf{P 3 0}$	F3ZN-S $\square \square \square \square \mathbf{P 6 0}$
Operating range		0.2 to 7 m	0.2 to 10 m		
Beam gap		9 mm	15 mm	30 mm	60 mm
Number of beams		21 to 125	13 to 120	7 to 60	4 to 30
Sensing height		180 to $1,116 \mathrm{~mm}$	180 to $1,785 \mathrm{~mm}$	180 to $1,770 \mathrm{~mm}$	240 to $1,740 \mathrm{~mm}$
Minimum detectable object size (non-transparent)		14 mm in diameter	25 mm in diameter	40 mm in diameter	70 mm in diameter
Light source (wavelength)		Infrared LED (870 nm)			
Supply voltage		24 VDC $\pm 10 \%$; ripple (p-p): 10\% max.			
Current consumption (under no-load conditions)		Emitter: 170 mA max.; Receiver: 120 mA max.			
Control output		```PNP:PNP transistor output (load current: 50 mA) Output 1: Light ON Output 2: Dark ON (default)```			
External diagnosis input		Open or 0 to 1.5 VDC: inactive (emitting) 9 to 24 VDC: active (emitting OFF), short-circuit current is 3 mA max.			
Indicators	Emitter	Incident level indicators (green): 5 LED indicators that turn ON/OFF according to the amount of incident light. Error indicators (red): 3 LED indicators that turn ON/OFF according to the type of errors that occur. Power indicator (green): Turns ON for normal operation; flashes when errors occur. External diagnosis indicator (orange): Turns ON in response to external diagnosis input.			
	Receiver	Incident level indicators (green): 5 LED indicators that turn ON/OFF according to the amount of incident light. Error indicators (red): 3 LED indicators that turn ON/OFF according to the type of errors that occur. Control output 1 operation indicator (orange): Turns ON when light is incident. Control output 2 operation indicator (orange): Turns ON when light is interrupted (factory setting). Power indicator (green): Turns ON for normal operation; flashes when errors occur. Function indicator (green): Turns ON when option is set.			
Protection		Reverse polarity protection (for power supply) and output short-circuit protection			
Response time		Refer to page D-368 for details.			
Ambient light intensity		Light intensity on the receiver surface: Incandescent lamp: 3,000 Ix max. Sunlight: 10,000 Ix max.			
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$; Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/storage: 30% to 95% (with no condensation)			
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC$)$			
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min			
Vibration resistance (malfunction)		10 to 55 Hz with a 0.7-mm double amplitude, 20 sweeps each in X , Y , and Z directions			
Shock resistance (malfunction)		$100 \mathrm{~m} / \mathrm{s}^{2}, 1,000$ times each in X, Y, and Z directions			
Degree of protection		IP65 (IEC)			
Connection method		M12 connector			
Weight (in packaging)		$($ Protective height +100$) \times 2+2,100 \mathrm{~g}$			
Materials	Case	Aluminum			
	Front cover	Acrylic (PMMA resin)			
	Cable	Oil-resistant PVC			
Accessories		Top, bottom, and intermediate* mounting brackets, and instruction manual			

* Intermediate mounting brackets are supplied only with the following models:

Models with a total length between 640 and $1,280 \mathrm{~mm}$: One set (i.e., one each for emitter and receiver)
Models with a total length greater than $1,280 \mathrm{~mm}$: Two sets (i.e., two each for emitter and receiver)

* PNP models available as of 2004.

Main Units

Common Ratings and Performance Data for F3ZN-S $\square \square \square \square N \square \square$ (-01 to -05) Sensors

Item	Model	F3ZN-S $\square \square \square \square$ N09	F3ZN-S $\square \square \square \square$ N15	F3ZN-S $\square \square \square \square$ N30	F3ZN-S $\square \square \square \square$ N60
Operating range		0.2 to 7 m		0.2 to 10 m	
Beam gap		9 mm	15 mm	30 mm	60 mm
Number of beams		21 to 125	13 to 120	7 to 60	4 to 30
Sensing height		180 to $1,116 \mathrm{~mm}$	180 to $1,785 \mathrm{~mm}$	180 to $1,770 \mathrm{~mm}$	240 to $1,740 \mathrm{~mm}$
Minimum detectable object size (non-transparent)		14 mm in diameter	25 mm in diameter	40 mm in diameter	70 mm in diameter
Light source (wavelength)		Infrared LED (870 nm)			
Supply voltage		24 VDC $\pm 10 \%$; ripple (p-p): 10% max.			
Current consumption (under no-load conditions)		Emitter: 170 mA max.; Receiver: 120 mA max.			
Control output		NPN:NPN transistor output (load current: 50 mA) Output 1: Light ON Output 2: Dark ON (default)			
External diagnosis input		Open or 9 to 24 VDC: inactive (emitting) 0 to 1.5 VDC : active (emitting OFF), short-circuit current is 3 mA max.			
Indicators	Emitter	Incident level indicators (green): 5 LED indicators that turn ON/OFF according to the amount of incident light. Error indicators (red): 3 LED indicators that turn ON/OFF according to the type of errors that occur. Power indicator (green): Turns ON for normal operation; flashes when errors occur. External diagnosis indicator (orange): Turns ON in response to external diagnosis input.			
	Receiver	Incident level indicators (green): 5 LED indicators that turn ON/OFF according to the amount of incident light. Error indicators (red): 3 LED indicators that turn ON/OFF according to the type of errors that occur. Control output 1 operation indicator (orange): Turns ON when light is incident. Control output 2 operation indicator (orange): Turns ON when light is interrupted (factory setting). Power indicator (green): Turns ON for normal operation; flashes when errors occur. Function indicator (green): Turns ON when option is set.			
Protection		Reverse polarity protection (for power supply) and output short-circuit protection			
Response time		Refer to page D-368 for details.			
Ambient light intensity		Light intensity on the receiver surface: Incandescent lamp: 3,000 Ix max. Sunlight: 10,000 Ix max.			
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$; Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/storage: 30\% to 95\% (with no condensation)			
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC)			
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min			
Vibration resistance (malfunction)		10 to 55 Hz with a 0.7 -mm double amplitude, 20 sweeps each in X, Y, and Z directions			
Shock resistance (malfunction)		$100 \mathrm{~m} / \mathrm{s}^{2}, 1,000$ times each in X, Y, and Z directions			
Degree of protection		IP65 (IEC)			
Connection method		M12 connector			
Weight (in packaging)		$($ Protective height +100$) \times 2+2,100 \mathrm{~g}$			
Materials	Case	Aluminum			
	Front cover	Acrylic (PMMA resin)			
	Cable	Oil-resistant PVC			
Accessories		Top, bottom, and intermediate* mounting brackets, and instruction manual			

* Intermediate mounting brackets are supplied only with the following models:

Models with a total length between 640 and $1,280 \mathrm{~mm}$: One set (i.e., one each for emitter and receiver)
Models with a total length greater than $1,280 \mathrm{~mm}$: Two sets (i.e., two each for emitter and receiver)

Ratings and Performance

Main Units

Controller

Item	Model	F3ZP-M1N-FLK	F3ZP-M1P-FLK
Supply voltage		24 VDC $\pm 10 \%$; ripple (p-p): 10\% max.	
Current consumption		50 mA max. (not including the Sensor's current consumption and output current)	
Connectable Sensors		F3ZN-S $\square \square \square \square \mathrm{N} \square \square$	F3ZN-S $\square \square \square \square \mathrm{P} \square \square$
Number of connectable Sensors		3 sets of Sensors and Sensor configurations with 240 beams.	
Output (OUT1, OUT2, OUTPUT (OUT3, ERROR, BANK OUT, TCH OUT))		Load supply voltage: 24 VDC max.; NPN open collector output (load current: 30 mA max.)	Load supply voltage: 24 VDC max.; PNP open collector output (load current: 30 mA max.)
Input (TCH, EDI, RESET, BANKIN, BANK1, BANK2)		DC input: Maximum input voltage: $24 \mathrm{~V} \pm 10 \%$ Operating voltage: ON voltage: 9 V min.; OFF voltage: 1.5 V max. Input current: 3 mA max.	
Program mable I/O ports (D00 to D15)	Output	Function can be configured by AScan software.	
		Load supply voltage: 24 VDC max.	
		NPN open collector output (load current: 50 mA max.)	PNP open collector output (load current: 30 mA max.)
	Input	DC input; Input voltage: $24 \mathrm{~V} \pm 10 \%$; Input current: 3 mA max.	
	Operating voltage	ON voltage: 9 V min. OFF voltage: 1.5 V max.	ON voltage: 1.5 V max. OFF voltage: 9 V min.
Communications functions	Communications ports	RS-232 port (D-sub 9-pin connector) and RS-485 port (terminal block) (DIP-Switch setting)	
	Communications protocol	CompoWay/F	
	Unit numbers	00 to 15 (Set by rotary switch.)	
	Baud rate	9,600, 14,400, 19,200, 38,400, 57,600, or 115,200 bps (Selected by switch.)	
	Data configuration	Data bits: 7; Parity: Even; Start bits: 1; Stop bits: 2; No flow control	
Clock function		Year, month, day, hour, minute, second, and day of week	
Indicators		POWER (green), MODE (green), RUN (green), and ERROR (red)	
Protection		Reverse polarity protection (for power supply) and output short-circuit protection	
Response time		Refer to page D-368 for details.	
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$; Storage: -20 to $75^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating/storage: 10% to 90% (with no condensation)	
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC$)$ between all terminals and the case	
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min ; Leakage current: 10 mA max.	
Vibration resistance (destruction)		Conforms to IEC 60068-6 10 to 57 Hz with $0.075-\mathrm{mm}$ double amplitude and 57 to 150 Hz with acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 80 min each in X, Y, and Z directions (10 sweeps $\times 8 \mathrm{~min}$ per sweep $=80 \mathrm{~min}$)	
Shock resistance (destruction)		Conforms to IEC 60068-27 $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y, and Z directions	
Structure		Built into panel, DIN-Rail mounting	
Accessories		RS-232C connector (plug, cover) and instruction manual	

Response Times

Detection Output Response Times
The response times vary with the length (sensing height) of the Sensor.

Model	Sensing height (mm)			
F3ZN-S $\square \square \square \square \mathrm{N}(\mathrm{P}) 09$ (-01 to -05)	0180 to 0441	0450 to 0756	0765 to 1071	1080 to 1116
F3ZN-S $\square \square \square \square \mathbf{N}(\mathbf{P}) 15 / \mathbf{3 0 / 6 0}$	0180 to 0735	0750 to 1260	1275 to 1785	---
Control output 1 ON \rightarrow OFF	11 ms	13.5 ms	16 ms	16.5 ms
OFF \rightarrow ON	44 ms	54 ms	64 ms	66 ms
Control outputs 2 and $\mathrm{ON} \rightarrow$ OFF	22 ms	27 ms	32 ms	33 ms
$3 \quad$ OFF \rightarrow ON	55 ms	67.5 ms	80 ms	82.5 ms
Programmable I/O (D00 to D15)	33 ms	40.5 ms	48 ms	49.5 ms

Note: The response times for control outputs 2 and 3 given in the above table are for when the output is set to "Light-ON" (i.e., ON if the beam is incident), which is the same setting as control output 1 .

Timing Chart for the Period between Workpiece Detection and Output Response

TR: Response time of control output 1 (ON $\rightarrow \mathrm{OFF}$). (Refer to Detection Output Response Times.)
Minimum detection time: The minimum time in which changes in the interrupted (or incident) state can be detected.
Minimum detection time for programmable I/O $=T \mathrm{TR} \times 2$
Minimum detection time for control outputs 1, 2, and 3 (interrupted) $=\quad T R$
Minimum detection time for control outputs 1,2 , and 3 (incident) $=T R \times 3$
Maximum delay time (maximum response time): The maximum time between light interruption (or incidence) and the resulting change in output.
Maximum delay time for programmable I/O output (D00 to D15)
$=\quad \mathrm{TR} \times 3$
Maximum delay time for control output 1 (interrupted)
Maximum delay time for control output 1 (incident)
$=\quad T R$
Maximum delay time for control outputs 2 and 3 (interrupted)
$=\quad \mathrm{TR} \times 4$

Maximum delay time for control outputs 2 and 3 (incident)
$=\quad T R \times 2$
$=\quad \mathrm{TR} \times 5$

Note: Consult your OMRON representative for details on response times when the Sensors are connected in series.

Timing Chart for External Diagnosis Function (Stable Incidence)

*1. INPUT is used for RESET and TCH
*2. OUTPUT is used for OUT3, ERROR, and TCH OUT
${ }^{*} 3$. EDI is external diagnosis input.
*4. COM OUT is connected to +24 V .
*5. COM IN is connected to 0 V .

Timing Chart for External Diagnosis Function (Stable Incidence)

*6. INPUT is used for RESET and TCH.
*7. OUTPUT is used for OUT3, ERROR, and TCH OUT.
*8. EDI is external diagnosis input.
*9. COM OUT is connected to +24 V
*10. COM IN is connected to OV

Controller Communications Settings

Mode Selection Switch
If necessary, make changes to the communications settings using the mode selection switch.
The baud rate is factory-set to $9,600 \mathrm{bps}$ and the unit number is factory-set to 1 .

- Baud rate selection pin
(Communications port: Pin 4 of the DIP switch)

Pin 4	Communications port
OFF	RS-232C
ON	RS-485

_ Be sure to set pin 9 of the DIP switch to OFF.

This is the termination setting for RS-485 communications. Set to ON if used as the termination point (normally OFF).

Engineering Data (Typical Examples)

Angular Range (Angle of Elevation) F3ZN-S $\square \square \square \mathrm{C}(\mathrm{P}) 09(-01)$

Angular Range (Angle of Rotation)
F3ZN-S $\square \square \square \square(P) 09(-01)$

 Do not use the F3ZN area scanner as a safety device in pressing machines or as a safety device for protecting the human body in any other kind of installation. Use F3S sensors. safety

(1) Do not use the Scanner in environments where flammable or explosive gases are present.
(2) The Scanner cannot be used as a safety device for protecting the operator's hands or any other part of the body in pressing machines, shears, rolling machines, spinning machines, cotton mill machines, or robots.
(3) This product is designed for applications such as detecting the entrance of human bodies into the operator area and detecting moving objects. It is not designed for use as a safety device.
(4) If this product is used in exported equipment in any of the ways 1) to 4) listed below, OMRON shall accept no responsibility for any problems concerning local law or product liability.

1) Application as a safety device for preventing injury resulting from the operator's hands or any other part of the body entering a dangerous area
2) Application in interlocks in machinery or installations
3) Application as a safety device that detects the presence of the operator's hands or any other part of the body in a dangerous area and stops the machinery or installation in which it is incorporated
4) Application as a sensing device in installations for preventing access to dangerous areas by detecting the operator's hands or any other part of the body, and opening/closing a window or door

Caution

When using more than one Scanner installed close together, in order to prevent malfunctions due to mutual interference, be sure to observe the points mentioned under Preventing Mutual Interference.

Application Precautions

In order to ensure safety, be sure to observe the points described below.

- Wiring

Operating Environment

- Do not attempt to disassemble, repair, or modify the product.
- Be sure to turn OFF power to the system before installing or replacing the product.

Correct Use

- Designing the System

Operation at Power-ON
After turning ON the power, one second must elapse before the Sensor can perform sensing. Therefore, do not use other related devices until at least one second has elapsed after turning the power ON. If the load and the Sensor are connected to different power supplies, be sure to turn ON the power to the Sensor first.
Preventing Mutual Interference

- When using more than one Sensor installed close together, separate them by the distances l_{1} or l_{2} (at least 1.5 times the distances shown under page D-371 Parallel Operating Range) in the way shown below.

Installed in Parallel

- Install barriers to block out light from other emitters. (See Fig. 1.)
In addition to direct light, light may also be reflected off walls, the floor, and other surfaces. Install the barriers so that all light from other emitters, including reflected light, is blocked. (See Fig. 2.)

(Fig. 2)
(Fig. 1)

- Wiring

Connection

- To extend the connection distance, use lines with a crosssectional area of at least $0.3 \mathrm{~mm}^{2}$, and do not extend to a distance exceeding 100 m . Use a shielded cable, and connect the shield line to the $0-\mathrm{V}$ line.
- Incorrect wiring may result in damage to devices. Ensure that connectors and cables do not come loose by giving careful consideration to the cable length and installation arrangement.
Cables
In configurations where the cable must be bent, allow at least the dimensions shown below. (Cable's minimum bending radius: 36 mm .)

- Installation

Installation Precautions

- Install the Sensor so that no beams of strong light, such as sunlight, fluorescent light, or incandescent light can enter at an angle less than the effective aperture angle of the Sensor.
- Do not strike the Sensor with a hammer during installation. Doing so may damage the internal structure.
- Install the Sensor so that the cables on the emitter and receiver point in the same direction. (See below.)

Note: The Sensor's ON/OFF indication and the Controller's ON/OFF status may vary, depending on the settings made by the user.

Main Units

Sensor
F3ZN-S $\square \square \square \square$ (P) $\square \square$
F3ZN-S $\square \square \square \square N(P) \square \square-01$

Mounting Hole Dimensions

Note: In the above diagram, the intermediate mounting bracket (refer to page D-376) is shown mounted on the left as an example.
If the intermediate mounting bracket is mounted on the right, the mounting holes must also be on the right.

The dimensions for different model numbers can be calculated using the following formulae.

Dimension C (protective height) $=$ The
4 digits in the model number
Dimension A $=\mathrm{C}+95$
Dimension B $=\mathrm{C}+63$
Dimension $\mathrm{D}=15.5$
Dimension E1 $=\mathrm{C}+31$
Dimension E2 $=\mathrm{C}+9$
Dimension $\mathrm{F}=$ See table below.
Dimension $\mathrm{P}=9$

Protective height (C)	Number of intermedi- ate mount- ing brackets	Dimension F (See note.)
Up to 611	0	---
612 to 1,116	1	$\mathrm{~F}=\mathrm{B} / 2$

Note: When not using the value of F obtained with the above calculation, use a value not exceeding 670 mm .

- F3ZN-S $\square \square \square \square N(P) 15$,

F3ZN-S
F3ZN-S $\square \square \square \mathrm{N}(\mathrm{P}) 60$
Dimension C (protective height) $=$ The
4 digits in the model number
Dimension $\mathrm{A}=\mathrm{C}+101$
Dimension B $=\mathrm{C}+69$
Dimension $\mathrm{D}=18.5$
Dimension $\mathrm{E} 1=\mathrm{C}+37$
Dimension E2 $=\mathrm{C}+15$
Dimension $\mathrm{F}=$ See table below.
Dimension $\mathrm{P}=15$

Protective height (C)	Number of intermedi- ate mount- ing brackets	Dimension F (See note.)
Up to 611	0	---
612 to 1,230	1	$\mathrm{~F}=\mathrm{B} / 2$
1,231 to 1,785	2	$\mathrm{~F}=\mathrm{B} / 3$

Note: When not using the value of F obtained with the above calculation, use a value not exceeding 670 mm .

* Consult your OMRON representative for other dimension diagrams.

Controller
F3ZP-M1N-FLK
F3ZP-M1P-FLK
Mounting Hole Dimensions

Accessories (Sold Separately)
Double-ended
Connector Cable
F39-JCR2 ($\mathrm{L}=0.2 \mathrm{~m}$)
F39-JC3 (L = 3 m)
F39-JC7 ($\mathrm{L}=7 \mathrm{~m}$) F39-JC10B $(L=10 \mathrm{~m})$ F39-JC15 (L = 15 m)

Color: NDUSTRIAL AUTOMATION

[^0]: *The screen images shown here may differ from the actual product.

