MOS FET Relays G3VM-101LR

World's Smallest SSOP Package MOS FET Relay* with High Load Voltage of 100 V.

- Leakage current of 200 pA max. (100 pA typ.) when relay is open.
- Turn-on time = 0.1 ms (typ.), Turn-off time = 0.1 ms (typ.)
- RoHS compliant

*Information correct as of May 2007, according to dataobtained by OMRON.

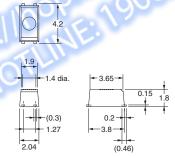
■ Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers
- Broadband systems

Note: The actual product is marked differently from the image shown here

■ List of Models

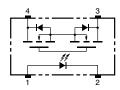
Contact form	Terminals	Load voltage (peak value)	Model	Number per tape	
SPST-NO	Surface-mounting	100 VAC	G3VM-101LR	Θ	
	terminals		G3VM-101LR(TR05)	500	
			G3VM-101LR(TR)	1,500	


■ Dimensions

Note: All units are in millimeters unless otherwise indicated

G3VM-101LR

The actual product is marked differently from the image shown here.



Note: A tolerance of ± 0.1 mm applies to all dimensions unless otherwise specified.

Weight: 0.03 g

■ Terminal Arrangement/Internal Connections (Top View)

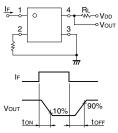
G3VM-101LR

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-101LR

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V_R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	100	٧	
	Continuous load current	Io	80	mA	
	ON current reduction rate	Δ I _O /°C	-0.8	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
Dielectric strength between input and output (See note 1.)		V _{I-O}	1,500	V _{rms}	AC for 1 min
Ambient operating temperature		T _a	-20 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation
Soldering temperature			260	°C	10 s

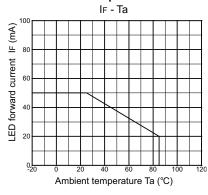

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Note:

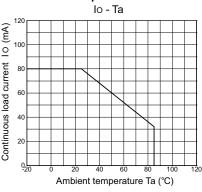
■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	٧	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	Ст		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1	5	mA	I _O = 80 mA	
Output	Maximum resistance with output ON	R _{ON}		8	14	Ω	I _F = 10 mA, I _O = 80 mA, t = 10 ms	
	Current leakage when the relay is open	I _{LEAK}		100	200	pA	V _{OFF} = 80 V	
	Capacity between terminals	C _{OFF}		6	8	pF	V = 0, f = 100 MHz, t < 1 s	
Capacity between I/O terminals		C _{I-O}		0.6	WA	pF	f = 1 MHz, V _s = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000	-	11	ΜΩ	$V_{I-O} = 500 \text{ VDC},$ $R_{oH} \le 60\%$	
Turn-ON time		t _{ON}	4	0.1	0.3	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}	-1	0.1	0.3	ms	V _{DD} = 20 V (See note 2.)	

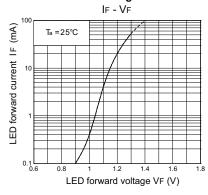
2. Turn-ON and Turn-OFF Times

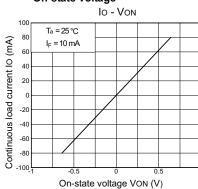

■ Recommended Operating Conditions

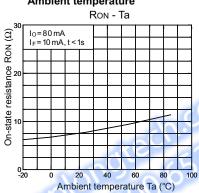
Use the G3VM under the following conditions so that the Relay will operate properly.

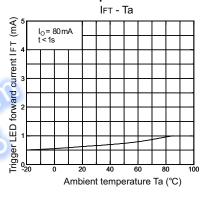

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			80	V
Operating LED forward current	I _F	10		30	mA
Continuous load current (AC peak/DC)	Io			80	mA
Operating temperature	T _a	25		60	°C

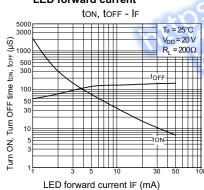
■ Engineering Data

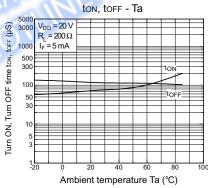

LED forward current vs. Ambient temperature

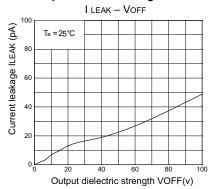

Continuous load current vs. Ambient temperature

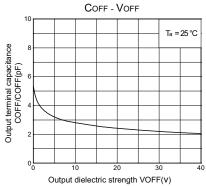

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current


Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs.
Output dielectric strength

Output terminal capacitance COFF/COFF(ov) vs. LED forward current

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

MOS FET Relays G3VM-101LR